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Abstract - Determining the appropriate dose of warfarin is a significant challenge due to the numerous factors that 

contribute to the proper dose of the anticoagulant, and the consequences of taking an incorrect dose can contribute to adverse 

side effects and have serious health consequences for the patient. Commonly used approaches to determine the initial dose 

of warfarin are the pharmacogenetic algorithm, the clinical algorithm, and a fixed-dose approach. This research presents the 

application of reinforcement learning using the LinUCB algorithm to identify the optimal warfarin dose through three major 

experiments. First, the authors employed lasso regression for feature selection to identify the most relevant predictors of 

warfarin dosage in the warfarin dataset, ensuring a more interpretable model. Second, they evaluated various reward 

designs, including sparse, accuracy-focused dense, time decay, and distribution-based rewards, on several metrics such as 

accuracy, precision, recall, and f1 score. They discovered that accuracy-based dense reward was superior in predicting 

optimal doses in most metrics. Third, they improved the LinUCB algorithm’s accuracy and f1 score by utilizing Hyperopt 

to identify the optimal value of hyperparameter alpha. Using data collected by the Pharmacogenetics and 

Pharmacogenomics Knowledge Base (PharmGKB), this research provides Reinforcement learning as a potential approach 

for determining warfarin doses. The final results of this study demonstrate the prospects of Reinforcement learning to 

improve current personalized medicine practices in Warfarin dosage. Representing an advancement in the application of 

Reinforcement learning within healthcare, this work provides other options for future research aimed at optimizing 

medication dosages to improve patient outcomes. 
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1. Introduction 
The appropriate dose of warfarin, a widely prescribed 

anticoagulant, is challenging to determine accurately due to 

the numerous patient-specific factors involved. Incorrect 

dosage can lead to severe adverse effects such as 

haemorrhaging or thrombosis, highlighting the critical need 

for precise dosing methods. While conventional approaches 

such as the pharmaco genetic algorithm, clinical algorithm, 

and fixed-dose methods exist, they often do not sufficiently 

account for individual patient variability, leading to 

suboptimal dosage recommendations. 

 

A significant gap remains in understanding how 

Reinforcement Learning (RL) techniques can effectively 

address the complexities inherent in personalized medicine, 

specifically regarding warfarin dosing. This research seeks 

to bridge this gap by applying the LinUCB algorithm, a 

contextual bandit approach, to optimize warfarin dosage. 

We systematically investigate different reward designs—

including sparse, accuracy-focused dense, time decay, and 

distribution-based rewards—and identify the most effective 

approach through rigorous evaluation. Unlike previous 

studies, which often rely on static algorithms or limited 

reward mechanisms, this paper uniquely compares multiple 

reward designs within the LinUCB framework and further 

optimizes the model using HyperOpt. This comprehensive 

evaluation distinctly demonstrates the potential to advance 

the precision and applicability of reinforcement learning for 

individualized warfarin dosing.  

 

Moreover, to further enhance the performance of the 

RL model, we explore hyperparameter optimization 

techniques, specifically using HyperOpt to identify the 

optimal alpha value. Utilizing a publicly available dataset 

from the Pharmacogenetics and Pharmacogenomics 

Knowledge Base (Phar- mGKB), our study evaluates RL as 

a robust methodology for personalized warfarin dosing. By 

addressing the existing research gap, our work demonstrates 

significant potential for RL techniques to improve dosing 

accuracy and patient out-comes in clinical settings. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Work 
Since warfarin has held a long-standing position as the 

primary oral anticoagulant worldwide, there has been 

previous work on developing the optimal model for warfarin 

dosing. 

 

2.1. Estimation of the Warfarin Dose with Clinical and 

Pharmacogenetic Data 

The International Warfarin Pharmacogenetics 

Consortium published its work ’Estimation of the Warfarin 

Dose with Clinical and Pharmacogenetic Data’ in 2009. 

Consortium (2009) focuses on incorporating the genetic 

variability of the patients to determine the optimal initial 

dose of warfarin. The researchers used data from more than 

5000 patients to develop a least-squares linear regression 

algorithm that predicts warfarin dosage considering both 

genetic and clinical factors. 

 

This pharmacogenetic model significantly surpassed the 

clinical model and the fixed-dose approach. 

 

2.2. Warfarin: Almost 60 Years Old and Still Causing 

Problems 

Pirmohamed (2006) covers the history of warfarin, the 

difficulties of accurately administering warfarin, and its 

potential use in pharmacogenetics. Despite its long-

standing position as the primary oral anticoagulant globally, 

warfarin is associated with significant risks and can have 

serious consequences if the wrong dose is prescribed. The 

document also highlights difficulties in accurately dosing 

warfarin due to several factors such as genetics, diet, alcohol 

intake, and more. The paper discusses the significant 

potential for pharmacogenetics to improve Warfarin dosage 

and safety by identifying key genetic factors and introducing 

pharmacogenetics into other therapeutic fields. 

 

2.3. Estimation of Warfarin Dosage with Reinforcement 

Learning 

Pinilla et al. (2020) use Reinforcement learning to 

model the proper dose of warfarin for patients by 

implementing a LinUCB bandit approach, which 

outperformed the baselines (fixed model of 35 mg/week 

doses and linear model based on patient data). In addition to 

the LinUCB bandit, the paper also explores online 

supervised learning and reward reshaping to boost 

performance. 

 

2.4. Research Gap and Contribution to Our Study 

This research paper directly addresses these gaps with 

a two-fold approach: 1) by explicitly comparing multiple 

research designs—sparse, accuracy-based dense, time 

decay, and distribution-based reward to rigorously assess 

their effectiveness and 2) Furthermore, unlike Pinilla et al. 

(2020), the authors enhance the LinUCB model performance 

through systematic hyperparameter optimization using 

HyperOpt. Thus, this work distinctly contributes to the 

existing literature by combining comprehensive reward 

design application with targeted hyperparameter 

optimization to demonstrate the adaptability and precision 

of reinforcement learning-based warfarin dosing. 

 

3. Methodology 
3.1. LinUCB: Linear Upper Confidence Bound 

LinUCB, as described by Li et al. (2010), is a linear 

upper confidence bound algorithm designed for solving 

contextual multi-armed bandit problems by incorporating 

contextual information for each decision. LinUCB assumes 

a linear relationship between the expected reward and the 

features of the context. For a reward rt,a, context xt, arm 

a, and weight vectors θˆ
a, we assume E[rt,a|xt] = xtθˆ

a. 

 

 
Fig. 1 LinUCB Algorithm: Confidence Interval Representation and 

Arm Selection. Adapted from Yoan (2019). 
 

Figure 1 illustrates the LinUCB decision-making 

process by visually representing the confidence intervals for 

each arm at a given time. The arm selected is the one with 

the highest upper confidence bound, reflecting the principle 

of optimism in the face of uncertainty. This approach 

balances exploration of less certain arms and exploitation 

of known, high-performing arms. 

 

For each patient, the algorithm calculates a confidence 

interval for each arm’s expected reward. Then, it chooses 

the arm with the highest UCB value (estimated expected 

reward plus confidence bound). Context features were 

selected through lasso regression. The choice of a was 

chosen to be 0.84 by utilizing hyperparameter optimization 

to improve performance. 

 

3.2. Feature Selection and Optimal Value of Al-pha 

Lasso regression was employed to identify the most 

relevant features for predicting warfarin dosage. Alpha a 

was selected through hyper-parameter optimization to 

improve the model performance. More information about 

the implementation lasso regression and a optimization can 

be found in Sections 

4.2 and 4.3 respectively. 

 

3.3. Reward Designs 

In reinforcement learning, the reward signal is 

responsible for determining the agent’s behavior and, 

therefore, is a crucial element within the reinforcement 

learning paradigm Eschmann (2021). Essentially, a reward 

signal provides feedback to the algorithm, indicating the 

effectiveness of the actions taken in relation to the task’s 

objectives. 
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Listed are the reward designs used, their definitions in 

the context of this methodology, and associated equations. 

Sparse Reward: R(at, a∗) returns a sparse reward of 1 if the 

chosen arm at (predicted dose) matches the true action a∗ 

(required dose), and 0 otherwise. Sparse rewards provide 

clear binary signals of success or failure, which simplify 

learning but might slow down convergence due to limited 

feedback. Eschmann (2021) 
 
 

 

Accuracy-Focused Dense Reward: R(at, a∗) returns a 

reward focused on improving accuracy. The reward is 

inversely proportional to the difference d(at, a∗) between 

the predicted and actual dose. (for example, the reward is 

higher for the smaller difference between the chosen arm 

and the true action). Eschmann (2021)  and Arm Selection. 

Adapted from Yoan (2019). 

 

d(at, a∗) = |at − a∗| (2) 

 

R(at, a*) =     
𝐷max − 𝑑(𝑎𝑡,𝑎

∗) 

𝐷𝑚𝑎𝑥
  (3) 

 

Time Decay Reward: R(at, a∗, n) returns a reward 

based on whether the chosen arm at matches the 

actual action a∗, with the reward decreasing each trial 

n at a decay rate δ. Eschmann (2021). 
 

 

 

Distribution-Based Reward: R(at, a∗) returns a reward 

based on whether the chosen arm matches the actual action 
and frequency of dose category in the data. The reward is 
inversely proportional to the probability of the actual 

action P (a∗) which is calculated as the count of actual 

required action Ca∗ /N. The reward is normalized by 

multiplying a scaling factor S and the inverse of the 
maximum count of category counts C. Eschmann (2021) 

 

 

 

3.4. Metrics 
The effectiveness of the different reward designs with Lin- 

UCB was compared with several metrics. A single run means 

that the algorithm is run for one patient. To mitigate order- 

ing bias, the data set was shuffled 20 times (resulting in mean 

metrics) that more accurately reflect the performance of the 

model by removing the possibility of ordering bias in the data 

set. 
 

• Mean Accuracy: The ratio of correct prediction to total 

number of predictions at a point in each run. Specifi- 

cally, the accuracy metrics were computed by compar- 

ing predictions from the LinUCB algorithm against the 

physician-guided, true optimal dosage from the Phar- 

mGKB dataset. 

• Mean Precision: The ratio of true positive predictions 

to number of true positives + false positives (positive 

predictions) 

• Mean Recall: Ratio of true positive predictions to num- 

ber of true positives + false negatives in the data. 

• Mean F1 score: Harmonic mean of precision and recall. 

 
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

4. Implementation 
4.1. Data Preprocessing 

The authors used a publicly available patient data set 

collected by Pharmacogenetics and Pharmacogenomics 

Knowledge Base (PharmGKB) for 5700 patients trained 

with warfarin from 21 research groups spanning 9 countries 

and 4 continents. There are 5528 patients with their true opti- 

malpatient-specific Warfarin dose (initially unknown but 

determined through the physician-guided dose adjustment 

process). The dose for each patient is classified as: 

1. Low: Less than 21 mg/week 

2. Medium: 21 - 49 mg/week 

3. High: More than 49 mg.week 

To preprocess the aforementioned dataset, the authors 

dropped patients with no known therapeutic dosage from the 

dataset and additional processing described below resulted in 

valid data for 5406 patients. 

Steps Followed: 

1. Raw Dataset has 5700 patients and 66 attributes about 

the patient (including Patient ID). 

2. Dropped patients with no therapeutic dose of warfarin 

and no stable dose of warfarin. 

3. Dropped patients with no information on gender. 

4. Imputed missing age, height, and weight with mean. 

5. After imputing, age was binned into 10 groups. 

6. Dropped the columns for Carbamazepine, Phenytoin, 

Rifampin, and Rifampicin after consolidating their 

values into the ’Enzyme Inducer Status’ column, where 

1 indicates the patient is taking any of these medications 

and 0 otherwise. 

7. Imputed missing values for the VKORc1 SNP 

rs9923231 based on race and VKORC1 SNP data at 

rs2359612, rs9934438, or rs8050894. (see Section 4 in 

Supplementary Appendix 1 of Estimation of the 

Warfarin Dose with Clinical and 

Pharmacogenetic Data). If the VKORC1 genotype 

could not be imputed, it was treated as ”unknown”. 
8. Dropped remaining VKORC1 genotype columns. 

9. Dropped all Cyp2C9 columns except ”Cyp2C9 

genotypes” 

10. Dropped columns that had more than 50% missing 

values. 

11. Dropped following columns 

• ’PharmGKB Subject ID’ 

• ’Estimated Target INR Range Based on Indication 
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• ’Subject Reached Stable of Warfarin’ 

12. Any missing cells imputed with ’unknown’ 

13. All the variables are converted into binary variables 

using one hot encoding. 

Figure 2 shows a graph of the coefficients with important 

features. 

Fig. 2 Features and their Coefficients 

 

4.2. Lasso Regression for Feature Selection 

Lasso regression was employed to identify the most 

relevant features for predicting the optimal warfarin dosage. 

By applying Lasso, we effectively performed feature 

selection by shrinking the coefficients of less important 

variables to zero. We selected features with an absolute 

coefficient value greater than 1 to have the greatest predictive 

power for dosage classification while keeping low 

dimensionality. 

 

It is important to remember that the dataset utilized 

from the Pharmacogenetics and Pharmacogenomics 

Knowledge Base (PharmGKB) could contain inherent 

biases due to demographic and clinical diversity among 

patients and missing values. Although extensive 

preprocessing, such as imputation and encoding (as done 

above), mitigates some biases, residual biases might persist, 

potentially affecting the generalizability of the results. 

 

Feature selection using lasso regression significantly 

impacts model interpretability and performance. By 

selecting a subset of relevant predictors, we reduced model 

complexity, enhancing interpretability and reducing the risk 

of overfitting. However, this selection could inadvertently 

exclude clinically relevant but statistically insignificant 

features, which might influence model accuracy and patient 

outcomes. Therefore, carefully considering the trade-offs 

between model simplicity, interpretability, and predictive 

performance is critical. 

 

From the results, we implemented the following feature 

set: 

• Age in decades 

• Gender 

• Race 

• Ethnicity 

• Height in cm 

• Weight in kg 

• Enzyme Inducer Status 

• Amiodarone 

• Indication for Warfarin Treatment 

• VKORC1 rs9923231 genotype 

• Cyp2C9 genotypes 

When implementing LinUCB (Section ??), we 

classified the dosage based on Section??. Below is the 

dosage classification and respective counts: 

• Low (0): 1146 

• Medium (1): 3321 

• High (2): 639 

 

4.3. Optimal Value of Alpha 

In LinUCB, the parameter α influences the exploration 

versus exploitation rate Fangwei (2020). In the context of 

multi-armed bandit problems, exploration involves 

selecting arms with relatively high uncertainty regarding 

their potential rewards (arms that have not been chosen as 

often in the past), while exploitation means choosing arms 

with high expected rewards. Note that α differs from ϵ 
(range from 0 to 1) used in the Epsilon Greedy Algorithm. ϵ 
directly determines the rate of exploration-exploitation (e.g. 

ϵ = 0.6 means the agent explores 60% of the time and 

exploits its knowledge 40%). However, α can take on any 

positive value and, differently, heavily influences the 

exploration-exploitation rate in LinUCB. 

 

Specifically, in LinUCB, α influences the size of the 

confidence interval; that is, a larger α value expands the 

confidence interval, encouraging exploration, while 

lowering α narrows it, placing more weight on exploitation. 

The choice of α is crucial as it affects the performance of 

the LinUCB model. We experimented with other values of 

α ranging from 0 to 5 for our LinUCB model using the top-

performing Accuracy Based Dense Reward (Section 4.4). 

The best α value found is 1.54, with a corresponding 

accuracy score of 0.663 and an F1 score of 0.567 (Accuracy 

Based Dense Reward). 

 

4.4. Procedure for Determining Optimal Alpha 

4.4.1. Objective Function 

Several optimization algorithms can be used to 

determine the value of alpha. In this case, the goal is to 

maximize accuracy and F1 score (ignored precision and 

recall since F1 Score is a harmonic mean of both of these 

metrics). We used HyperOpt Bergstra et al. (2013) as the 

optimization interface for reasons mentioned in section 4.4.7.  

 

The way to use Hyperopt is to describe: 

• the objective function is to minimize 

• the space over which to search 

• a trial database 

• the search algorithm to use 

The objective function is a run of an experiment with 

some arbitrary α as its parameter, resulting in accuracy and 

F1 score, and returns the negative average of these two 

metrics. We return the combined metric as a negative 
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average of the metrics because HyperOpt minimizes the 

objective function. Returning the negative allows for the 

maximization of accuracy and F1 score. 

Combined Metric = −
Accuracy + F1 Score 

2 
4.4.2. Configuration Space 

The configuration space object describes the domain 

over which HyperOpt is allowed to search. In the 

experiments in section 5, we used α as 1.0; however, α can 

take any positive value. Hence, the search space for α is 

defined as a uniform distribution between 0 and 5, so 

HyperOpt selects α values within this range during the 

optimization process. 

 

4.4.3. Search Algorithm 

The Tree-of-Parzen-Estimators (TPE) algorithm is 

chosen for the search through the algo=tpe.suggest 

parameter in fmin. TPE is a single objective Bayesian 

optimization technique that efficiently finds the best 

hyperparameters by building a probability model of the 

objective function. 

 

4.4.4. Trials Database 

A Trials object is created to track all the 

optimization attempts. This object stores detailed 

information about each trial, including the hyperparameters 

tested and the resulting objective function value. 

 

4.4.5. Execution Process 

The fmin function from HyperOpt is used to conduct 

the optimization. It is configured with the objective function, 

the defined configuration space, the TPE algorithm as the 

search algorithm, a maximum of 50 evaluations, and the 

Trials object to track the optimization process. The 

fmin function then executes the optimization loop, 

selecting a hyperparameter, evaluating the objective 

function, and updating its model of the search space based on 

the results. 

 
Fig. 3 Accuracy and F1 Score vs. Alpha 

 

4.4.6. Result 
After the optimization process completes, the fmin 

function returns the best α value found, which is printed out. 

This value represents the α that maximizes the accuracy and 

F1 score of the experiment. The best α value found is 2.55, 

with a corresponding accuracy score of 0.607 and an F1 

score of 0.482. Which are not significantly different from 

results using an α of 1.0 (Accuracy Based Dense Reward). 

 

4.4.6. Additional Info 

Determining the optimal value of α can be done in 

various other ways (e.g. Genetic Algorithms, Multi-

Objective Optimization, Single Objective Optimization). 

Hyperopt provides algorithms and software infrastructure 

for carrying out hyperparameter optimization for machine 

learning algorithms.  

 

In this study, a single objective Bayesian optimization 

algorithm was chosen called Tree-of-ParzenEstimators 

(TPE) for its simplicity. TPE randomly tests α and its 

combined metric score. The α space was defined as 

uniformly distributed from 0 to 5, and 50 trials were 

conducted. To generate Figure 3, the results were sorted in 

ascending order of α values, and the corresponding accuracy 

and F1 score values were plotted. 

 

5. Results 
With the methods implemented as described, the next 

section details the experimental outcomes, clearly 

demonstrating the effectiveness of each reward design and 

optimized parameters. 

 

5.1. Metrics Performance 

Figure 4 shows the mean accuracy across all the reward 

strategies. The sparse and accuracy-based dense reward 

strategies perform similarly, achieving 66% by 5405 patients. 

The time decay and distribution-based reward strategies do 

not perform as well, achieving 50% and 56% mean 

accuracy, respectively. 

 

In Figure 5, it is observed that the sparse reward and 

accuracy-based dense reward perform the best at 0.58%. 

 

Figure 6 presents the recall performance of the reward 

strategies. From 1000 patients onward, a clear ranking 

of the reward strategies is evident in the following order: 

distribution-based, accuracy-based, dense, sparse, and time 

decay. Unlike its previous results, the distribution-based re-

ward strategy performed the best at 0.64%. 
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Patients 

Seen 
Sparse Dense 

Time 

Decay 

Distribution 

Based 

1000 0.59 (1) 0.58 (2) 0.50 (4) 0.51 (3) 

2000 0.63 (1) 0.62 (2) 0.50 (4) 0.54 (3) 

3000 0.64 (1) 0.64 (2) 0.50 (4) 0.55 (3) 

4000 0.65 (1) 0.65 (2) 0.50 (4) 0.56 (3) 

5405 0.66 (1) 0.66 (2) 0.50 (4) 0.56 (3) 
Fig. 4 Accuracy comparison across reward strategies 

 

Figure 7 illustrates the comparison of the F1 score 

across the reward strategies. The F1 score considers both 

recall and precision. The accuracy-based dense reward 

performs the best at 0.56% F1 score, followed by the 

distribution-based, sparse, and time decay reward strategies. 

 

The accuracy-based dense reward methodology 

consistently outperformed the competing reward designs 

across multiple evaluation metrics, with the exception of the 

recall metric, which ranked second. The consistent and high-

level performance highlights the superiority of the accuracy-

based dense reward in this case study. 
 

6. Conclusion 
The study compares various reward designs for 

optimizing the initial Warfarin dose using LinUCB for 

training, hyper-parameter optimization, and lasso regression 

for feature selection. The results of the experiments 

demonstrate the higher performance of accuracy-based 

dense rewards, which increases the learning speed and 

accuracy of LinUCB. Among all the experiments, dense 

rewards seem to be the better option. From the HyperOpt 

experiments, the best value for al- pha is 1.54 (accuracy: 

0.663 and f1 score: 0.567). 

 

We achieved better results primarily because the 

accuracy-based dense reward consistently guided the model 

toward correct dosage predictions by providing clear and 

immediate feedback. Compared to other reward designs, the 

accuracy-based dense reward helped the model learn faster 

from each patient, improving accuracy. Optimizing the 

alpha value further enhanced these results by effectively 

balancing exploration and certainty in predictions. 

 

 

Fig. 5 Precision comparison across reward strategies 

 

 

Fig. 6 Recall comparison across reward strategies 

 

 

Fig. 7 F1 Score comparison across reward strategies 

 

Patients 

Seen 
Sparse Dense 

Time 

Decay 

Distribution 

Based 

1000 0.49 (3) 0.50 (1) 0.44 (4) 0.50 (2) 

2000 0.53 (2) 0.54 (1) 0.45 (4) 0.52 (3) 

3000 0.55 (2) 0.56 (1) 0.45 (4) 0.53 (3) 

4000 0.56 (2) 0.57 (1) 0.45 (4) 0.54 (3) 

5405 0.58 (2) 0.58 (1) 0.45 (4) 0.54 (3) 

Patients 

Seen 
Sparse Dense 

Time 

Decay 

Distribution 

Based 

1000 0.50 (3) 0.53 (2) 0.48 (4) 0.59 (1) 

2000 0.51 (3) 0.54 (2) 0.49 (4) 0.62 (1) 

3000 0.52 (3) 0.55 (2) 0.49 (4) 0.63 (1) 

4000 0.52 (3) 0.55 (2) 0.49 (4) 0.64 (1) 

5405 0.52 (3) 0.55 (2) 0.49 (4) 0.64 (1) 

Patients 

Seen 
Sparse Dense 

Time 

Decay 

Distribution 

Based 

1000 0.50 (3) 0.51 (1) 0.44 (4) 0.50 (2) 

2000 0.52 (3) 0.54 (1) 0.45 (4) 0.52 (2) 

3000 0.53 (3) 0.55 (1) 0.45 (4) 0.53 (2) 

4000 0.54 (3) 0.56 (1) 0.45 (4) 0.54 (2) 

5405 0.54 (3) 0.56 (1) 0.45 (4) 0.55 (2) 
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6.1. Future Work 

Future research can aim to broaden the scope and build 

on the findings of this study. 

• The research paper primarily focused on the LinUCB 

algorithm, while other Reinforcement Learning 

algorithms can be used, such as online supervised 

learning for contextual bandits, as shown in Pinilla et 

al. (2020). 

• There is a need for exploration of the optimization of 

other hyperparameters to improve the performance of 

the Lin- UCB model. Identifying the proper adjustments 

to these parameters may boost performance. 

• Improving the quality of the dataset could significantly 

enhance performance. Using a dataset that documents 

the patient-specific changes in dosages over time until 

the optimal dosage is prescribed can enable the 

application of algorithms such as value iteration or 

policy iteration.

 

References 
[1] James Bergstra, Dan Yamins, and David D. Cox, “Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine 

Learning Algorithms,” Proceedings of the 12th Python in Science Conference, pp. 1-8, 2013. [CrossRef] [Google Scholar] [Publisher 

Link] 

[2] The International Warfarin Pharmacogenetics Consortium, “Estimation of the Warfarin Dose with Clinical and Pharmacogenetic 

Data,” New England Journal of Medicine, vol. 360, no. 8, pp. 753-764, 2009. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Jonas Eschmann, Reward Function Design in Reinforcement Learning, Reinforcement Learning Algorithms: Analysis and 

Applications, vol. 883, pp. 25-33, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Contextual Bandits Analysis of Linucb Disjoint Algorithm with Dataset, Kenneth Foo Fangwei, 2020. [Online]. Available: 

https://kfoofw.github.io/contextual-bandits-linear-ucb-disjoint/ 

[5] Lihong Li et al., “A Contextual-Bandit Approach to Personalized News Article Recommendation,” Proceedings of the 19th 

International Conference on World Wide Web, Raleigh North Carolina, USA, pp. 661-670, 2010. [CrossRef] [Google Scholar] 

[Publisher Link] 

[6] Arpita Vats, “Estimation of Warfarin Dosage with Reinforcement Learning,” arXiv, pp. 1-7, 2020. [CrossRef] [Google Scholar] 

[Publisher Link] 

[7] Munir Pirmohamed, “Warfarin: Almost 60 Years Old and Still Causing Problems,” British Journal of Clinical Pharmacology, vol. 

62, no. 5, pp. 509-511, 2006. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Yoan Russac, Introduction to Linear Bandits, pp. 1-38, 2019. [Google Scholar] [Publisher Link] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 

 

https://doi.org/10.25080/Majora-8b375195-003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hyperopt%3A+A+python+library+for+optimizing+the+hyperparameters+of+ma-+chinelearningalgorithms&btnG=
https://proceedings.scipy.org/articles/Majora-8b375195-003
https://proceedings.scipy.org/articles/Majora-8b375195-003
https://doi.org/10.1056/NEJMoa0809329
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimation+of+the+warfar+in+dose+with+clinical+and+pharmaco+genetic+data&btnG=
https://www.nejm.org/doi/full/10.1056/NEJMoa0809329
https://doi.org/10.1007/978-3-030-41188-6_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reward+Function+Design+in+Reinforcement+Learning&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-41188-6_3
https://doi.org/10.1145/1772690.1772758
https://scholar.google.com/scholar?q=Acontextual-banditapproachtopersonalizednewsarticle+recommendation&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/1772690.1772758
https://doi.org/10.48550/arXiv.2109.07564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimation+of+warfarin+dosage+with+reinforcement+learning&btnG=
https://arxiv.org/abs/2109.07564
https://doi.org/10.1111/j.1365-2125.2006.02806.x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Warfarin%3A+almost+60+years+old+and+still+causing+problems&btnG=
https://pmc.ncbi.nlm.nih.gov/articles/PMC1885167/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+linear+bandits&btnG=
https://www.yoanrussac.com/en/talk/talk1-ens/intro_linear_bandits.pdf

